Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Zdenek Dvorak
Comparable box dimension
Commits
dfb16030
Commit
dfb16030
authored
Sep 08, 2021
by
Zdenek Dvorak
Browse files
The subgraph argument.
parent
0951065d
Changes
1
Hide whitespace changes
Inline
Sidebyside
comparableboxdimension.tex
View file @
dfb16030
...
...
@@ 306,23 +306,92 @@ Moreover, $x\prec y$, implying that $E_i(u)\cap E_i(v)\neq\emptyset$ for $i=0,\l
$
xy
\in
E
(
T
_
\beta
)
$
. Hence, again we have
$
f
(
u
)
\cap
f
(
v
)
\neq\emptyset
$
.
\end{proof}
Note that in Theorem~
\ref
{
thmcs
}
, we only get a representation of a supergraph
of
$
G
$
.
%We will need the fact that the chromatic number is at most exponential in the comparable box dimension;
%this follows from~\cite{subconvex} and we include the argument to make the dependence clear.
%\begin{lemma}\label{lemmachrom}
%If $G$ has a comparable box representation $f$ in $\mathbb{R}^d$, then $G$ is $3^d$colorable.
%\end{lemma}
%\begin{proof}
%We actually show that $G$ is $(3^d1)$degenerate. Since every induced subgraph of $G$ also
%has a comparable box representation in $\mathbb{R}^d$, it suffices to show that the minimum degree of $G$
%is less than $3^d$. Let $v$ be a vertex of $G$ such that $f(v)$ has the smallest volume. For every neighbor $u$ of $v$,
%there exists a translation $B_u$ of $f(v)$ such that $B_u\subseteq f(u)$ and $B_u$ touches $f(v)$.
%Note that $f(v)\cup \bigcup_{u\in N(v)} B_u$ is a union of internally disjoint translations of $f(v)$ contained in
%a box obtained from $f(v)$ by scaling it by a factor of three, and thus $1+N(v)\le 3^d$.
%\end{proof}
We can now combine Theorem~
\ref
{
thmcs
}
with Lemma~
\ref
{
lemmacliq
}
.
\begin{corollary}
\label
{
corcs
}
If
$
G
$
is obtained from graphs in a class
$
\GG
$
by cliquesums, then there exists a graph
$
G'
$
such that
$
G
\subseteq
G'
$
and
$
\cbdim
(
G'
)
\le
(
\cbdim
(
\GG
)+
1
)
\bigl
(
2
^{
\cbdim
(
\GG
)
}
+
1
\bigr
)
\le
6
^{
\cbdim
(
\GG
)
}$
.
\end{corollary}
Note that only bound the comparable box dimension of a supergraph
of
$
G
$
. To deal with this issue, we show that the comparable box dimension of a subgraph
is at most exponential in the comparable box dimension of the whole graph.
This is essentially Corollary~25 in~
\cite
{
subconvex
}
, but since the setting is somewhat
different and the construction of~
\cite
{
subconvex
}
uses rotated boxes,
we provide details of the argument.
A
\emph
{
star coloring
}
of a graph
$
G
$
is a proper coloring such that any two color classes induce
a star forest (i.e., a graph not containing any 4vertex path). The
\emph
{
star chromatic number
}
$
\chi
_
s
(
G
)
$
of
$
G
$
is the minimum number of colors in a star coloring of
$
G
$
.
We will need the fact that the star chromatic number is at most exponential in the comparable box dimension;
this follows from~
\cite
{
subconvex
}
and we include the argument to make the dependence clear.
\begin{lemma}
\label
{
lemmachrom
}
If
$
G
$
has a comparable box representation
$
f
$
in
$
\mathbb
{
R
}^
d
$
, then
$
G
$
has star chromatic number at most
$
2
\cdot
9
^
d
$
.
\end{lemma}
\begin{proof}
Let
$
v
_
1
$
,
\ldots
,
$
v
_
n
$
be the vertices of
$
G
$
ordered nonincreasingly by the size of the boxes that represent them;
i.e., so that
$
f
(
v
_
i
)
\sqsubseteq
f
(
v
_
j
)
$
whenever
$
i>j
$
. We greedily color the vertices in order, giving
$
v
_
i
$
the smallest
color different from the colors of all vertices
$
v
_
j
$
such that
$
j<i
$
and either
$
v
_
jv
_
i
\in
E
(
G
)
$
, or there exists
$
m>j
$
such that
$
v
_
jv
_
m,v
_
mv
_
i
\in
E
(
G
)
$
. Note this gives a star coloring: A path on four vertices always contains a 3vertex subpath
$
v
_{
i
_
1
}
v
_{
i
_
2
}
v
_{
i
_
3
}$
such that
$
i
_
1
<i
_
2
,i
_
3
$
, and in such a path, the coloring procedure gives each vertex a distinct color.
Hence, it remains to bound the number of colors we used. Let us fix some
$
i
$
, and let us first bound the number of vertices
$
v
_
j
$
such that
$
j<i
$
and there exists
$
m>i
$
such that
$
v
_
jv
_
m,v
_
mv
_
i
\in
E
(
G
)
$
. Let
$
B
$
be the box that is five times larger than
$
f
(
v
)
$
and has the same center as
$
f
(
v
)
$
. Since
$
f
(
v
_
m
)
\sqsubseteq
f
(
v
_
i
)
\sqsubseteq
f
(
v
_
j
)
$
, there exists a translation
$
B
_
j
$
of
$
f
(
v
_
i
)
$
contained in
$
f
(
v
_
j
)
\cap
B
$
. The boxes
$
B
_
j
$
for different
$
j
$
have disjoint interiors and their interiors are also disjoint from
$
f
(
v
_
i
)
\subset
B
$
, and thus the number of such indices
$
j
$
is at most
$
\vol
(
B
_
j
)/
\vol
(
f
(
v
_
i
))
1
=
5
^
d

1
$
.
A similar argument shows that the number of indices
$
m
$
such that
$
m<i
$
and
$
v
_
mv
_
i
\in
E
(
G
)
$
is at most
$
3
^
d

1
$
.
Consequently, the number of indices
$
j<i
$
for which there exists
$
m
$
such that
$
j<m<i
$
and
$
v
_
jv
_
m,v
_
mv
_
i
\in
E
(
G
)
$
is at most
$
(
3
^
d

1
)
^
2
$
.
Consequently, when choosing the color of
$
v
_
i
$
greedily, we only need to avoid colors of at most
$$
(
5
^
d

1
)
+
(
3
^
d

1
)
+
(
3
^
d

1
)
^
2
<
5
^
d
+
9
^
d<
2
\cdot
9
^
d
$$
vertices.
\end{proof}
Next, let us show a bound on the comparable box dimension of subgraphs.
\begin{lemma}
\label
{
lemmasubg
}
If
$
G
$
is a subgraph of a graph
$
G'
$
, then
$
\cbdim
(
G
)
\le
\cbdim
(
G'
)+
\chi
^
2
_
s
(
G'
)
$
.
\end{lemma}
\begin{proof}
As we can remove the boxes that represent the vertices, we can assume
$
V
(
G'
)=
V
(
G
)
$
.
Let
$
f
$
be a touching representation by comparable boxes in
$
\mathbb
{
R
}^
d
$
, where
$
d
=
\cbdim
(
G'
)
$
. Let
$
\varphi
$
be a star coloring of
$
G'
$
using colors
$
\{
1
,
\ldots
,c
\}
$
, where
$
c
=
\chi
_
s
(
G'
)
$
.
For any distinct colors
$
i,j
\in\{
1
,
\ldots
,c
\}
$
, let
$
A
_{
i,j
}
\subseteq
V
(
G
)
$
consist of vertices
$
u
$
of color
$
i
$
such that there exists a vertex
$
v
$
of color
$
j
$
such that
$
uv
\in
E
(
G'
)
$
and
$
uv
\not\in
E
(
G
)
$
.
Let us define a representation
$
h
$
by boxes in
$
\mathbb
{
R
}^{
d
+
\binom
{
c
}{
2
}}$
by starting from the representation
$
f
$
and,
for each pair
$
i<j
$
of colors, adding a dimension
$
d
_{
i,j
}$
and setting
$
h
(
v
)[
d
_{
i,j
}
]=[
1
/
3
,
4
/
3
]
$
for
$
v
\in
A
_{
i,j
}$
,
$
h
(
v
)[
d
_{
i,j
}
]=[
4
/
3
,

1
/
3
]
$
for
$
v
\in
A
_{
j,i
}$
,
and
$
h
(
v
)[
d
_{
i,j
}
](
v
)=[
1
/
2
,
1
/
2
]
$
otherwise. Note that the boxes in this extended representation are comparable,
as in the added dimensions, all the boxes have size
$
1
$
.
Suppose
$
uv
\in
E
(
G
)
$
, where
$
\varphi
(
u
)=
i
$
and
$
\varphi
(
v
)=
j
$
and say
$
i<j
$
. The boxes
$
f
(
u
)
$
and
$
f
(
v
)
$
touch.
We cannot have
$
u
\in
A
_{
i,j
}$
and
$
v
\in
A
_{
j,u
}$
, as then
$
G'
$
would contain a 4vertex path in colors
$
i
$
and
$
j
$
.
Hence, in any added dimension
$
d'
$
, at least one of
$
h
(
u
)
$
and
$
h
(
v
)
$
is represented by the interval
$
[
1
/
2
,
1
/
2
]
$
,
and thus
$
h
(
u
)[
d'
]
\cap
h
(
v
)[
d'
]
\neq\emptyset
$
. Therefore, the boxes
$
h
(
u
)
$
and
$
h
(
v
)
$
touch.
Suppose now that
$
uv
\not\in
E
(
G
)
$
. If
$
uv
\not\in
E
(
G'
)
$
, then
$
f
(
u
)
$
is disjoint from
$
f
(
v
)
$
, and thus
$
h
(
u
)
$
is disjoint from
$
h
(
v
)
$
. Hence, we can assume
$
uv
\in
E
(
G'
)
$
,
$
\varphi
(
u
)=
i
$
,
$
\varphi
(
v
)=
j
$
and
$
i<j
$
. Then
$
u
\in
A
_{
i,j
}$
,
$
v
\in
A
_{
j,i
}$
,
$
h
(
u
)[
d
_{
i,j
}
]=[
1
/
3
,
4
/
3
]
$
,
$
h
(
v
)[
d
_{
j,i
}
]=[
4
/
3
,

1
/
3
]
$
, and
$
h
(
u
)
\cap
h
(
v
)=
\emptyset
$
.
Consequently,
$
h
$
is a touching representation of
$
G
$
by comparable boxes in dimension
$
d
+
\binom
{
c
}{
2
}
\le
d
+
c
^
2
$
.
\end{proof}
Let us now combine Lemmas~
\ref
{
lemmachrom
}
and
\ref
{
lemmasubg
}
.
\begin{corollary}
\label
{
corsubg
}
If
$
G
$
is a subgraph of a graph
$
G'
$
, then
$
\cbdim
(
G
)
\le
\cbdim
(
G'
)+
4
\cdot
81
^{
\cbdim
(
G'
)
}
\le
5
\cdot
81
^{
\cbdim
(
G'
)
}$
.
\end{corollary}
Let us remark that an exponential increase in the dimension is unavoidable: We have
$
\cbdim
{
K
_{
2
^
d
}}
=
d
$
,
but the graph obtained from
$
K
_{
2
^
d
}$
by deleting a perfect matching has comparable box dimension
$
2
^{
d

1
}$
.
Corollaries~
\ref
{
corcs
}
and~
\ref
{
corsubg
}
now give the main result of this section.
\begin{corollary}
\label
{
corcomb
}
If
$
G
$
is obtained from graphs in a class
$
\GG
$
by cliquesums, then
$
\cbdim
(
G
)
\le
5
\cdot
81
^{
6
^{
\cbdim
(
\GG
)
}}$
.
\end{corollary}
\section
{
The product structure and minorclosed classes
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment