Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
Comparable box dimension
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Zdenek Dvorak
Comparable box dimension
Commits
0b81ca9b
Commit
0b81ca9b
authored
3 years ago
by
Zdenek Dvorak
Browse files
Options
Downloads
Patches
Plain Diff
Improved readability of the clique-sum argument.
parent
e743a8cd
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
comparable-box-dimension.tex
+47
-32
47 additions, 32 deletions
comparable-box-dimension.tex
with
47 additions
and
32 deletions
comparable-box-dimension.tex
+
47
−
32
View file @
0b81ca9b
...
@@ -68,7 +68,8 @@ For example, all complete bipartite graphs $K_{n,m}$ are touching graphs of axis
...
@@ -68,7 +68,8 @@ For example, all complete bipartite graphs $K_{n,m}$ are touching graphs of axis
one part are represented by
$
m
\times
1
\times
1
$
boxes and the vertices of the other part are represented by
$
1
\times
n
\times
1
$
one part are represented by
$
m
\times
1
\times
1
$
boxes and the vertices of the other part are represented by
$
1
\times
n
\times
1
$
boxes (a
\emph
{
box
}
is the cartesian product of intervals of non-zero length).
boxes (a
\emph
{
box
}
is the cartesian product of intervals of non-zero length).
Dvo
\v
{
r
}
\'
ak, McCarty and Norin~
\cite
{
subconvex
}
noticed that this issue disappears if we forbid such a combination of
Dvo
\v
{
r
}
\'
ak, McCarty and Norin~
\cite
{
subconvex
}
noticed that this issue disappears if we forbid such a combination of
long and wide boxes: Two boxes are
\emph
{
comparable
}
if a translation of one of them is a subset of the other one.
long and wide boxes: For two boxes
$
B
_
1
$
and
$
B
_
2
$
, we write
$
B
_
1
\sqsubseteq
B
_
2
$
if a translation of
$
B
_
1
$
is a subset of
$
B
_
2
$
.
We say that
$
B
_
1
$
and
$
B
_
2
$
are
\emph
{
comparable
}
if
$
B
_
1
\sqsubseteq
B
_
2
$
or
$
B
_
2
\sqsubseteq
B
_
1
$
.
A
\emph
{
touching representation by comparable boxes
}
of a graph
$
G
$
is a touching representation
$
f
$
by boxes
A
\emph
{
touching representation by comparable boxes
}
of a graph
$
G
$
is a touching representation
$
f
$
by boxes
such that for every
$
u,v
\in
V
(
G
)
$
, the boxes
$
f
(
u
)
$
and
$
f
(
v
)
$
are comparable. For a graph
$
G
$
, let the
\emph
{
comparable box dimension
}
$
\cbdim
(
G
)
$
such that for every
$
u,v
\in
V
(
G
)
$
, the boxes
$
f
(
u
)
$
and
$
f
(
v
)
$
are comparable. For a graph
$
G
$
, let the
\emph
{
comparable box dimension
}
$
\cbdim
(
G
)
$
of
$
G
$
be the smallest integer
$
d
$
such that
$
G
$
has a touching representation by comparable boxes in
$
\mathbb
{
R
}^
d
$
.
of
$
G
$
be the smallest integer
$
d
$
such that
$
G
$
has a touching representation by comparable boxes in
$
\mathbb
{
R
}^
d
$
.
...
@@ -112,20 +113,6 @@ where $M$ is chosen large enough so that $f(u)\subseteq [-M,M] \times \cdots \ti
...
@@ -112,20 +113,6 @@ where $M$ is chosen large enough so that $f(u)\subseteq [-M,M] \times \cdots \ti
Then
$
h
$
is a touching representation of
$
G
$
by comparable boxes in
$
\mathbb
{
R
}^{
d
+
1
}$
.
Then
$
h
$
is a touching representation of
$
G
$
by comparable boxes in
$
\mathbb
{
R
}^{
d
+
1
}$
.
\end{proof}
\end{proof}
%We will need the fact that the chromatic number is at most exponential in the comparable box dimension;
%this follows from~\cite{subconvex} and we include the argument to make the dependence clear.
%\begin{lemma}\label{lemma-chrom}
%If $G$ has a comparable box representation $f$ in $\mathbb{R}^d$, then $G$ is $3^d$-colorable.
%\end{lemma}
%\begin{proof}
%We actually show that $G$ is $(3^d-1)$-degenerate. Since every induced subgraph of $G$ also
%has a comparable box representation in $\mathbb{R}^d$, it suffices to show that the minimum degree of $G$
%is less than $3^d$. Let $v$ be a vertex of $G$ such that $f(v)$ has the smallest volume. For every neighbor $u$ of $v$,
%there exists a translation $B_u$ of $f(v)$ such that $B_u\subseteq f(u)$ and $B_u$ touches $f(v)$.
%Note that $f(v)\cup \bigcup_{u\in N(v)} B_u$ is a union of internally disjoint translations of $f(v)$ contained in
%a box obtained from $f(v)$ by scaling it by a factor of three, and thus $1+|N(v)|\le 3^d$.
%\end{proof}
We need a bound on the clique number in terms of the comparable box dimension.
We need a bound on the clique number in terms of the comparable box dimension.
For a box
$
B
=
I
_
1
\times
\cdots
I
_
d
$
and
$
i
\in\{
1
,
\ldots
,d
\}
$
, let
$
B
[
i
]=
I
_
i
$
.
For a box
$
B
=
I
_
1
\times
\cdots
I
_
d
$
and
$
i
\in\{
1
,
\ldots
,d
\}
$
, let
$
B
[
i
]=
I
_
i
$
.
\begin{lemma}
\label
{
lemma-cliq
}
\begin{lemma}
\label
{
lemma-cliq
}
...
@@ -142,6 +129,7 @@ such that
...
@@ -142,6 +129,7 @@ such that
\item
for each
$
uv
\in
E
(
G
)
$
, there exists
$
x
\in
V
(
T
)
$
such that
$
u,v
\in\beta
(
x
)
$
, and
\item
for each
$
uv
\in
E
(
G
)
$
, there exists
$
x
\in
V
(
T
)
$
such that
$
u,v
\in\beta
(
x
)
$
, and
\item
for each
$
v
\in
V
(
G
)
$
, the set
$
\{
x
\in
V
(
T
)
:v
\in\beta
(
x
)
\}
$
is non-empty and induces a connected subtree of
$
T
$
.
\item
for each
$
v
\in
V
(
G
)
$
, the set
$
\{
x
\in
V
(
T
)
:v
\in\beta
(
x
)
\}
$
is non-empty and induces a connected subtree of
$
T
$
.
\end{itemize}
\end{itemize}
For nodes
$
x,y
\in
V
(
T
)
$
, we write
$
x
\preceq
y
$
if
$
x
=
y
$
or
$
x
$
is a descendant of
$
y
$
in
$
T
$
.
For each vertex
$
v
\in
V
(
G
)
$
, let
$
p
(
v
)
$
be the node
$
x
\in
V
(
T
)
$
such that
$
v
\in
\beta
(
x
)
$
nearest to the root of
$
T
$
.
For each vertex
$
v
\in
V
(
G
)
$
, let
$
p
(
v
)
$
be the node
$
x
\in
V
(
T
)
$
such that
$
v
\in
\beta
(
x
)
$
nearest to the root of
$
T
$
.
The
\emph
{
adhesion
}
of the tree decomposition is the maximum of
$
|
\beta
(
x
)
\cap\beta
(
y
)
|
$
over distinct
$
x,y
\in
V
(
T
)
$
,
The
\emph
{
adhesion
}
of the tree decomposition is the maximum of
$
|
\beta
(
x
)
\cap\beta
(
y
)
|
$
over distinct
$
x,y
\in
V
(
T
)
$
,
and its
\emph
{
width
}
is the maximum of the sizes of the bags minus
$
1
$
. The
\emph
{
treewidth
}
of a graph is the minimum
and its
\emph
{
width
}
is the maximum of the sizes of the bags minus
$
1
$
. The
\emph
{
treewidth
}
of a graph is the minimum
...
@@ -151,8 +139,8 @@ In fact, we will prove the following stronger fact (TODO: Was this published som
...
@@ -151,8 +139,8 @@ In fact, we will prove the following stronger fact (TODO: Was this published som
\begin{lemma}
\label
{
lemma-tw
}
\begin{lemma}
\label
{
lemma-tw
}
Let
$
(
T,
\beta
)
$
be a tree decomposition of a graph
$
G
$
of width
$
t
$
.
Let
$
(
T,
\beta
)
$
be a tree decomposition of a graph
$
G
$
of width
$
t
$
.
Then
$
G
$
has a touching representation
$
h
$
by hypercubes in
$
R
^{
t
+
1
}$
such that
Then
$
G
$
has a touching representation
$
h
$
by hypercubes in
$
R
^{
t
+
1
}$
such that
for
$
u,v
\in
V
(
G
)
$
, if
$
p
(
u
)
\
n
eq
p
(
v
)
$
and
$
p
(
u
)
$
is an ancestor of
$
p
(
v
)
$
in
$
T
$
,
for
$
u,v
\in
V
(
G
)
$
, if
$
p
(
u
)
\
prec
eq
p
(
v
)
$
, then
$
h
(
u
)
\sqsubseteq
h
(
v
)
$
.
then
$
\vol
(
h
(
u
))
>
\vol
(
h
(
v
))
$
.
Moreover, the representation can be chosen so that no two hypercubes have the same size
.
\end{lemma}
\end{lemma}
\begin{proof}
\begin{proof}
...
...
...
@@ -178,6 +166,7 @@ For each note $x\in V(T)$, let $\pi(x)=\{x\}\cup \{p(v):v\in\beta(x)\}$. Let $T
...
@@ -178,6 +166,7 @@ For each note $x\in V(T)$, let $\pi(x)=\{x\}\cup \{p(v):v\in\beta(x)\}$. Let $T
$
xy
\in
E
(
T
_
\beta
)
$
if and only if
$
x
\in\pi
(
y
)
$
or
$
y
\in\pi
(
x
)
$
.
$
xy
\in
E
(
T
_
\beta
)
$
if and only if
$
x
\in\pi
(
y
)
$
or
$
y
\in\pi
(
x
)
$
.
\begin{lemma}
\label
{
lemma-legraf
}
\begin{lemma}
\label
{
lemma-legraf
}
If
$
(
T,
\beta
)
$
is a tree decompositon of
$
G
$
of adhesion
$
a
$
, then
$
(
T,
\pi
)
$
is a tree decomposition of
$
T
_
\beta
$
of width at most
$
a
$
.
If
$
(
T,
\beta
)
$
is a tree decompositon of
$
G
$
of adhesion
$
a
$
, then
$
(
T,
\pi
)
$
is a tree decomposition of
$
T
_
\beta
$
of width at most
$
a
$
.
Moreover,
$
\pi
(
x
)
$
is a clique in
$
T
_
\beta
$
and
$
p
(
x
)=
x
$
for each
$
x
\in
V
(
T
)
$
.
\end{lemma}
\end{lemma}
\begin{proof}
\begin{proof}
For each edge
$
xy
\in
E
(
T
_
\beta
)
$
, we have
$
x,y
\in
\pi
(
x
)
$
or
$
x,y
\in
\pi
(
y
)
$
by definition.
For each edge
$
xy
\in
E
(
T
_
\beta
)
$
, we have
$
x,y
\in
\pi
(
x
)
$
or
$
x,y
\in
\pi
(
y
)
$
by definition.
...
@@ -191,6 +180,13 @@ Consider a node $x\in V(T)$. Note that for each $v\in \beta(x)$, the vertex $p(
...
@@ -191,6 +180,13 @@ Consider a node $x\in V(T)$. Note that for each $v\in \beta(x)$, the vertex $p(
In particular, if
$
x
$
is the root of
$
T
$
, then
$
\pi
(
x
)=
\{
x
\}
$
. Otherwise, if
$
y
$
is the parent of
$
x
$
in
$
T
$
, then
In particular, if
$
x
$
is the root of
$
T
$
, then
$
\pi
(
x
)=
\{
x
\}
$
. Otherwise, if
$
y
$
is the parent of
$
x
$
in
$
T
$
, then
$
p
(
v
)=
x
$
for every
$
v
\in
\beta
(
x
)
\setminus\beta
(
y
)
$
, and thus
$
|
\pi
(
x
)
|
\le
|
\beta
(
x
)
\cap
\beta
(
y
)
|
+
1
\le
a
+
1
$
.
$
p
(
v
)=
x
$
for every
$
v
\in
\beta
(
x
)
\setminus\beta
(
y
)
$
, and thus
$
|
\pi
(
x
)
|
\le
|
\beta
(
x
)
\cap
\beta
(
y
)
|
+
1
\le
a
+
1
$
.
Hence, the width of
$
(
T,
\pi
)
$
is at most
$
a
$
.
Hence, the width of
$
(
T,
\pi
)
$
is at most
$
a
$
.
Suppose now that
$
y
$
and
$
z
$
are distinct vertices in
$
\pi
(
x
)
$
. Then both
$
y
$
and
$
z
$
are ancestors of
$
x
$
in
$
T
$
,
and thus without loss of generality, we can assume that
$
y
\preceq
z
$
. If
$
y
=
x
$
, then
$
yz
\in
E
(
T
_
\beta
)
$
by definition.
Otherwise, there exist vertices
$
u,v
\in
\beta
(
x
)
$
such that
$
p
(
u
)=
y
$
and
$
p
(
v
)=
z
$
. Since
$
v
\in
\beta
(
x
)
\cap\beta
(
z
)
$
and
$
y
$
is on the path in
$
T
$
from
$
x
$
to
$
z
$
, we also have
$
v
\in\beta
(
y
)
$
. This implies
$
z
\in\pi
(
y
)
$
and
$
yz
\in
E
(
T
_
\beta
)
$
.
Hence,
$
\pi
(
x
)
$
is a clique in
$
T
_
\beta
$
. Moreover, note that
$
x
\not\in
\pi
(
w
)
$
for any ancestor
$
w
\neq
x
$
of
$
x
$
in
$
T
$
,
and thus
$
p
(
x
)=
x
$
.
\end{proof}
\end{proof}
We are now ready to deal with the clique-sums.
We are now ready to deal with the clique-sums.
...
@@ -202,37 +198,56 @@ $G\subseteq G'$ and $\cbdim(G')\le (\cbdim(\GG)+1)(\omega(\GG)+1)$.
...
@@ -202,37 +198,56 @@ $G\subseteq G'$ and $\cbdim(G')\le (\cbdim(\GG)+1)(\omega(\GG)+1)$.
\begin{proof}
\begin{proof}
Let
$
(
T,
\beta
)
$
be a tree decomposition of
$
G
$
over
$
\GG
$
; the adhesion
$
a
$
of
$
(
T,
\beta
)
$
is at most
$
\omega
(
\GG
)
$
.
Let
$
(
T,
\beta
)
$
be a tree decomposition of
$
G
$
over
$
\GG
$
; the adhesion
$
a
$
of
$
(
T,
\beta
)
$
is at most
$
\omega
(
\GG
)
$
.
By Lemma~
\ref
{
lemma-legraf
}
,
$
(
T,
\pi
)
$
is a tree decomposition of
$
T
_
\beta
$
of width at most
$
a
$
. By Lemma~
\ref
{
lemma-tw
}
,
By Lemma~
\ref
{
lemma-legraf
}
,
$
(
T,
\pi
)
$
is a tree decomposition of
$
T
_
\beta
$
of width at most
$
a
$
. By Lemma~
\ref
{
lemma-tw
}
,
$
T
_
\beta
$
has a touching representation
$
h
$
by hypercubes in
$
\mathbb
{
R
}^{
a
+
1
}$
. Moreover,
$
T
_
\beta
$
has a touching representation
$
h
$
by hypercubes in
$
\mathbb
{
R
}^{
a
+
1
}$
such that
letting
$
\prec
$
be a linear ordering on
$
V
(
T
)
$
in a non-decreasing order according to the volume of the hypercubes assigned by
$
h
$
,
$
h
(
x
)
\sqsubseteq
h
(
y
)
$
whenever
$
x
\preceq
y
$
.
we have that
$
x
\prec
y
$
whenever
$
x
$
is a descendant of
$
y
$
in
$
T
$
.
Since
$
T
_
\beta
$
has treewidth at most
$
a
$
, it has a proper coloring
$
\varphi
$
by colors
$
\{
0
,
\ldots
,a
\}
$
.
Since
$
T
_
\beta
$
has treewidth at most
$
a
$
, it has a proper coloring
$
\varphi
$
by colors
$
\{
0
,
\ldots
,a
\}
$
.
For every
$
x
\in
V
(
T
)
$
, let
$
f
_
x
$
be a touching representation of the torso of
$
x
$
by comparable boxes in
$
\mathbb
{
R
}^
d
$
For every
$
x
\in
V
(
T
)
$
, let
$
f
_
x
$
be a touching representation of the torso
$
G
_
x
$
of
$
x
$
by comparable boxes in
$
\mathbb
{
R
}^
d
$
,
for
$
d
=
\cbdim
(
\GG
)
$
. We scale and translate the representations so that for every
$
x
\in
V
(
T
)
$
and
$
i
\in\{
0
,
\ldots
,a
\}
$
,
where
$
d
=
\cbdim
(
\GG
)
$
. We scale and translate the representations so that for every
$
x
\in
V
(
T
)
$
and
$
i
\in\{
0
,
\ldots
,a
\}
$
,
there exists a box
$
E
_
i
(
x
)
$
such that
there exists a box
$
E
_
i
(
x
)
$
such that
\begin{itemize}
\begin{itemize}
\item
whenever
$
x
\prec
y
$
, we have
$
E
_
i
(
x
)
\subseteq
E
_
i
(
y
)
$
and a translation of
$
E
_
i
(
x
)
$
is a subset of every box of
\item
[(a)]
for distinct
$
x,y
\in
V
(
T
)
$
, if
$
h
(
x
)
\sqsubset
h
(
y
)
$
, then
$
E
_
i
(
x
)
\sqsubset
E
_
i
(
y
)
$
and
$
E
_
i
(
x
)
\sqsubset
f
_
y
(
v
)
$
for every
$
v
\in
\beta
(
y
)
$
,
the representation
$
f
_
y
$
whenever
$
x
\prec
y
$
,
\item
[(b)]
if
$
x
\prec
y
$
, then
$
E
_
i
(
x
)
\subseteq
E
_
i
(
y
)
$
,
\item
if
$
i
=
\varphi
(
x
)
$
, then all boxes of
$
f
_
x
$
are subsets of
$
E
_
i
(
x
)
$
, and
\item
[(c)]
if
$
i
=
\varphi
(
x
)
$
, then
$
f
_
x
(
v
)
\subseteq
E
_
i
(
x
)
$
for every
$
v
\in\beta
(
x
)
$
, and
\item
if
$
i
\neq
p
(
v
)
$
and
$
K
=
\{
v
\in\beta
(
x
)
:
\varphi
(
p
(
v
))=
i
\}
$
, then letting
$
y
=
p
(
v
)
$
for
$
v
\in
K
$
(and noting that this
$
y
$
\item
[(d)]
if
$
i
\neq
\varphi
(
x
)
$
and
$
K
=
\{
v
\in\beta
(
x
)
:
\varphi
(
p
(
v
))=
i
\}
$
is non-empty, then letting
$
y
=
p
(
v
)
$
for
$
v
\in
K
$
,
is unique, since
$
\varphi
$
is a proper coloring of
$
T
_
\beta
$
and that
$
K
$
is a clique in
$
G
_
y
$
), the box
$
E
_
i
(
x
)
$
the box
$
E
_
i
(
x
)
$
contains a point belonging to
$
\bigcap
_{
v
\in
K
}
f
_
y
(
v
)
$
.
contains a point belonging to
$
\bigcap
_{
v
\in
K
}
f
_
y
(
v
)
$
.
\end{itemize}
\end{itemize}
Some explanation is in order for the last point: Firstly, since
$
\pi
(
x
)
$
is a clique in
$
T
_
\beta
$
, there
exists only one vertex
$
y
\in
\pi
(
x
)
$
of color
$
i
$
, and thus
$
y
=
p
(
v
)
$
for all
$
v
\in
K
$
.
Moreover,
$
K
$
is a clique in
$
G
_
y
$
, and thus
$
\bigcap
_{
v
\in
K
}
f
_
y
(
v
)
$
is non-empty. Lastly,
note that if
$
x
\prec
z
\prec
y
$
, then
$
K
=
\beta
(
x
)
\cap\beta
(
y
)
\subseteq
\beta
(
z
)
\cap
\beta
(
y
)
$
,
and thus
$
E
_
i
(
z
)
$
was also chosen to contain a point of
$
\bigcap
_{
v
\in
K
}
f
_
y
(
v
)
$
;
hence, a choice of
$
E
_
i
(
x
)
$
satisfying
$
E
_
i
(
x
)
\subseteq
E
_
i
(
z
)
$
as required by (b) is possible.
Let us now define
$
f
(
v
)=
h
(
p
(
v
))
\times
E
_
0
(
v
)
\times
\cdots\times
E
_
a
(
v
)
$
for each
$
v
\in
V
(
G
)
$
,
Let us now define
$
f
(
v
)=
h
(
p
(
v
))
\times
E
_
0
(
v
)
\times
\cdots\times
E
_
a
(
v
)
$
for each
$
v
\in
V
(
G
)
$
,
where
$
E
_
i
(
v
)=
f
_{
p
(
v
)
}
(
v
)
$
if
$
i
=
\varphi
(
p
(
v
))
$
and
$
E
_
i
(
v
)=
E
_
i
(
p
(
v
))
$
otherwise. We claim this gives a touching representation
where
$
E
_
i
(
v
)=
f
_{
p
(
v
)
}
(
v
)
$
if
$
i
=
\varphi
(
p
(
v
))
$
and
$
E
_
i
(
v
)=
E
_
i
(
p
(
v
))
$
otherwise. We claim this gives a touching representation
of a supergraph of
$
G
$
by comparable boxes in
$
\mathbb
{
R
}^{
(
d
+
1
)(
a
+
1
)
}$
. First, note that the boxes are indeed comparable;
of a supergraph of
$
G
$
by comparable boxes in
$
\mathbb
{
R
}^{
(
d
+
1
)(
a
+
1
)
}$
. First, note that the boxes are indeed comparable;
if
$
p
(
u
)=
p
(
v
)
$
, then this is the case since
$
f
_{
p
(
v
)
}$
is a representation by comparable boxes, and if say
if
$
p
(
u
)=
p
(
v
)
$
, then this is the case since
$
f
_{
p
(
v
)
}$
is a representation by comparable boxes, and if say
$
p
(
u
)
\prec
p
(
v
)
$
, then this is due to
the scaling of
$
f
_{
p
(
u
)
}$
. Next, let us argue
$
f
(
u
)
$
and
$
f
(
v
)
$
have disjoint
$
p
(
u
)
\prec
p
(
v
)
$
, then this is due to
(a) and (c)
. Next, let us argue
$
f
(
u
)
$
and
$
f
(
v
)
$
have disjoint
interiors. If
$
p
(
u
)=
p
(
v
)
$
, this is the case since
$
f
_{
p
(
v
)
}$
is a touching representation, and if
$
p
(
u
)
\neq
p
(
v
)
$
,
interiors. If
$
p
(
u
)=
p
(
v
)
$
, this is the case since
$
f
_{
p
(
v
)
}$
is a touching representation, and if
$
p
(
u
)
\neq
p
(
v
)
$
,
then this is the case because
$
h
$
is a touching representation. Finally, suppose that
$
uv
\in
E
(
G
)
$
. Let
$
x
$
then this is the case because
$
h
$
is a touching representation. Finally, suppose that
$
uv
\in
E
(
G
)
$
. Let
$
x
$
be the node of
$
T
$
nearest to the root such that
$
u,v
\in
\beta
(
x
)
$
. Without loss of generality,
$
p
(
u
)=
x
$
.
be the node of
$
T
$
nearest to the root such that
$
u,v
\in
\beta
(
x
)
$
. Without loss of generality,
$
p
(
u
)=
x
$
.
Let
$
y
=
p
(
v
)
$
. If
$
x
=
y
$
, then
$
f
(
u
)
\cap
f
(
v
)
\neq\emptyset
$
, since
$
f
_
x
$
is a touching representation of
$
G
_
x
$
.
Let
$
y
=
p
(
v
)
$
. If
$
x
=
y
$
, then
$
f
(
u
)
\cap
f
(
v
)
\neq\emptyset
$
, since
$
f
_
x
$
is a touching representation of
$
G
_
x
$
and
$
uv
\in
E
(
G
_
x
)
$
.
If
$
x
\neq
y
$
, then
$
y
\in\pi
(
x
)
$
and
$
xy
\in
E
(
T
_
\beta
)
$
, implying that
$
h
(
x
)
\cap
h
(
y
)
\neq\emptyset
$
.
If
$
x
\neq
y
$
, then
$
y
\in\pi
(
x
)
$
and
$
xy
\in
E
(
T
_
\beta
)
$
, implying that
$
h
(
x
)
\cap
h
(
y
)
\neq\emptyset
$
.
Moreover,
$
x
\prec
y
$
, implying that
$
E
_
i
(
u
)
\cap
E
_
i
(
v
)
\neq\emptyset
$
for
$
i
=
0
,
\ldots
,a
$
.
Moreover,
$
x
\prec
y
$
, implying that
$
E
_
i
(
u
)
\cap
E
_
i
(
v
)
\neq\emptyset
$
for
$
i
=
0
,
\ldots
,a
$
by (b) if
$
\varphi
(
x
)
\neq
i
\neq
\varphi
(
y
)
$
,
Hence, again we have
$
f
(
u
)
\cap
f
(
v
)
\neq\emptyset
$
.
(b) and (c) if
$
\varphi
(
x
)=
i
\neq\varphi
(
y
)
$
, and (d) if
$
\varphi
(
x
)
\neq
i
=
\varphi
(
y
)
$
(we cannot have
$
\varphi
(
x
)=
i
=
\varphi
(
y
)
$
, since
$
xy
\in
E
(
T
_
\beta
)
$
. Hence, again we have
$
f
(
u
)
\cap
f
(
v
)
\neq\emptyset
$
.
\end{proof}
\end{proof}
%We will need the fact that the chromatic number is at most exponential in the comparable box dimension;
%this follows from~\cite{subconvex} and we include the argument to make the dependence clear.
%\begin{lemma}\label{lemma-chrom}
%If $G$ has a comparable box representation $f$ in $\mathbb{R}^d$, then $G$ is $3^d$-colorable.
%\end{lemma}
%\begin{proof}
%We actually show that $G$ is $(3^d-1)$-degenerate. Since every induced subgraph of $G$ also
%has a comparable box representation in $\mathbb{R}^d$, it suffices to show that the minimum degree of $G$
%is less than $3^d$. Let $v$ be a vertex of $G$ such that $f(v)$ has the smallest volume. For every neighbor $u$ of $v$,
%there exists a translation $B_u$ of $f(v)$ such that $B_u\subseteq f(u)$ and $B_u$ touches $f(v)$.
%Note that $f(v)\cup \bigcup_{u\in N(v)} B_u$ is a union of internally disjoint translations of $f(v)$ contained in
%a box obtained from $f(v)$ by scaling it by a factor of three, and thus $1+|N(v)|\le 3^d$.
%\end{proof}
\section
{
Exploiting the product structure
}
\section
{
Exploiting the product structure
}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment