Skip to content
Snippets Groups Projects
Commit b4eeffa9 authored by Martin Mareš's avatar Martin Mareš
Browse files

Linear probing: Forgotten constant in the proof

parent 90a3f0d0
No related branches found
No related tags found
No related merge requests found
......@@ -806,9 +806,9 @@ $$
We bound the former probability simply by~1 and use the previous corrolary to bound
the latter probability:
$$
\E[\vert R\vert] \le 3 + \sum_{\ell\ge 0} 2^{\ell+3} \cdot q^{2^\ell}
= 3 + 8 \cdot \sum_{\ell\ge 0} 2^\ell \cdot q^{2^\ell}
\le 3 + 8 \cdot \sum_{i\ge 1} i\cdot q^i.
\E[\vert R\vert] \le 3 + \sum_{\ell\ge 0} 2^{\ell+3} \cdot 12 \cdot q^{2^\ell}
= 3 + 8 \cdot 12 \cdot \sum_{\ell\ge 0} 2^\ell \cdot q^{2^\ell}
\le 3 + 96 \cdot \sum_{i\ge 1} i\cdot q^i.
$$
Since the last sum converges for an arbitrary $q\in(0,1)$, the expectation of~$\vert R\vert$
is at most a~constant. This concludes the proof of the theorem.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment