diff --git a/06-hash/hash.tex b/06-hash/hash.tex
index 54efa1185be6c8a6dc46e4c690f59da58e691e8c..ac786df6aa4ffc4e1e80646d46aa2360a3fdbc4e 100644
--- a/06-hash/hash.tex
+++ b/06-hash/hash.tex
@@ -199,7 +199,7 @@ Now, we turn back to the original linear family~$\cal L$.
 
 \proof
 We fix $x,y\in [p]$ distinct and $i,j\in [p]$. To verify $(2,4)$-independence,
-we need to prove that $\Pr[h_{a,b}(x) = i \land h_{a,b}(x) = j] \le 4/m^2$ for a~random
+we need to prove that $\Pr[h_{a,b}(x) = i \land h_{a,b}(y) = j] \le 4/m^2$ for a~random
 choice of parameters $(a,b)$.
 
 As in the proof of universality of~$\cal L$, we consider the bijection between