diff --git a/04-ab_tree/cpp/Makefile b/04-ab_tree/cpp/Makefile
new file mode 100644
index 0000000000000000000000000000000000000000..e6ab22807f87d47388cd149817ae6cc99fd3ee00
--- /dev/null
+++ b/04-ab_tree/cpp/Makefile
@@ -0,0 +1,12 @@
+test: ab_tree_test
+	./$<
+
+CXXFLAGS=-std=c++11 -O2 -Wall -Wextra -g -Wno-sign-compare
+
+ab_tree_test: ab_tree_test.cpp ab_tree.h test_main.cpp
+	$(CXX) $(CXXFLAGS) $^ -o $@
+
+clean:
+	rm -f ab_tree_test
+
+.PHONY: clean test
diff --git a/04-ab_tree/cpp/ab_tree.h b/04-ab_tree/cpp/ab_tree.h
new file mode 100644
index 0000000000000000000000000000000000000000..e77374b286fb6ae6ef7fb4646dcc73785c7973f0
--- /dev/null
+++ b/04-ab_tree/cpp/ab_tree.h
@@ -0,0 +1,135 @@
+#include <limits>
+#include <vector>
+#include <tuple>
+#include <iostream>
+
+using namespace std;
+
+// If the condition is not true, report an error and halt.
+#define EXPECT(condition, message) do { if (!(condition)) expect_failed(message); } while (0)
+
+void expect_failed(const string& message);
+
+/*** One node ***/
+
+class ab_node {
+  public:
+    // Keys stored in this node and the corresponding children
+    // The vectors are large enough to accomodate one extra entry
+    // in overflowing nodes.
+    vector<ab_node *> children;
+    vector<int> keys;
+    ab_node *parent;
+
+    // If this node contains the given key, return true and set i to key's position.
+    // Otherwise return false and set i to the first key greater than the given one.
+    bool find_branch(int key, int &i)
+    {
+        i = 0;
+        while (i < keys.size() && keys[i] <= key) {
+            if (keys[i] == key)
+                return true;
+            i++;
+        }
+        return false;
+    }
+
+    // Insert a new key at posision i and add a new child between keys i and i+1.
+    void insert_branch(int i, int key, ab_node *child)
+    {
+        keys.insert(keys.begin() + i, key);
+        children.insert(children.begin() + i + 1, child);
+    }
+
+    // An auxiliary function for displaying a sub-tree under this node.
+    void show(int indent);
+};
+
+/*** Tree ***/
+
+class ab_tree {
+  public:
+    int a;          // Minimum allowed number of children
+    int b;          // Maximum allowed number of children
+    ab_node *root;  // Root node (even a tree with no keys has a root)
+    int num_nodes;  // We keep track of how many nodes the tree has
+
+    // Create a new node and return a pointer to it.
+    ab_node *new_node(ab_node* parent)
+    {
+        ab_node *n = new ab_node;
+        n->keys.reserve(b);
+        n->children.reserve(b+1);
+        n->parent = parent;
+        num_nodes++;
+        return n;
+    }
+
+    // Delete a given node, assuming that its children have been already unlinked.
+    void delete_node(ab_node *n)
+    {
+        num_nodes--;
+        delete n;
+    }
+
+    // Constructor: initialize an empty tree with just the root.
+    ab_tree(int a, int b)
+    {
+        EXPECT(a >= 2 && b >= 2*a - 1, "Invalid values of a,b");
+        this->a = a;
+        this->b = b;
+        num_nodes = 0;
+        // The root has no keys and one null child pointer.
+        root = new_node(nullptr);
+        root->children.push_back(nullptr);
+    }
+
+    // An auxiliary function for deleting a subtree recursively.
+    void delete_tree(ab_node *n)
+    {
+        for (int i=0; i < n->children.size(); i++)
+            if (n->children[i])
+                delete_tree(n->children[i]);
+        delete_node(n);
+    }
+
+    // Destructor: delete all nodes.
+    ~ab_tree()
+    {
+        delete_tree(root);
+        EXPECT(num_nodes == 0, "Memory leak detected: some nodes were not deleted");
+    }
+
+    // Find a key: returns true if it is present in the tree.
+    bool find(int key)
+    {
+        ab_node *n = root;
+        while (n) {
+            int i;
+            if (n->find_branch(key, i))
+                return true;
+            n = n->children[i];
+        }
+        return false;
+    }
+
+    // Display the tree on standard output in human-readable form.
+    void show();
+
+    // Check that the data structure satisfies all invariants.
+    void audit();
+
+    // Split the node into two nodes: move some children of n into 
+    // a newly created node such that n contains exactly size children in the end.
+    // Return the new node and the key separating n and the new node.
+    virtual pair<ab_node*, int> split_node(ab_node* n, int size)
+    {
+        // FIXME: Implement
+    }
+
+    // Insert: add key to the tree (unless it was already present).
+    virtual void insert(int key)
+    {
+        // FIXME: Implement
+    }
+};
diff --git a/04-ab_tree/cpp/ab_tree_test.cpp b/04-ab_tree/cpp/ab_tree_test.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..d718d876dc341da95934b9f1d8aa309530fec07f
--- /dev/null
+++ b/04-ab_tree/cpp/ab_tree_test.cpp
@@ -0,0 +1,150 @@
+#include <functional>
+#include <cstdlib>
+#include <vector>
+
+#include "ab_tree.h"
+
+// Debugging output: showing trees prettily on standard output.
+
+void ab_tree::show()
+{
+    root->show(0);
+    for (int i=0; i<70; i++)
+        cout << '=';
+    cout << endl;
+}
+
+void ab_node::show(int indent)
+{
+    for (int i = children.size() - 1; i >= 0 ; i--) {
+        if (i < keys.size()) {
+            for (int j = 0; j < indent; j++)
+                cout << "    ";
+            cout << keys[i] << endl;
+        }
+        if (children[i])
+            children[i]->show(indent+1);
+    }
+}
+
+// Invariant checks
+
+void audit_subtree(ab_tree *tree, ab_node *n, ab_node* parent, int key_min, int key_max, int depth, int &leaf_depth)
+{
+    if (!n) {
+        // Check that all leaves are on the same level.
+        if (leaf_depth < 0)
+            leaf_depth = depth;
+        else
+            EXPECT(depth == leaf_depth, "Leaves are not on the same level");
+        return;
+    }
+    // Check consistency of parent pointers
+    EXPECT(n->parent == parent, "Inconsistent parent pointers");
+
+    // The number of children must be in the allowed range.
+    if (depth > 0)
+        EXPECT(n->children.size() >= tree->a, "Too few children");
+    EXPECT(n->children.size() <= tree->b, "Too many children");
+
+    // We must have one more children than keys.
+    EXPECT(n->children.size() == n->keys.size() + 1, "Number of keys does not match number of children");
+
+    // Allow degenerate trees with 0 keys in the root.
+    if (n->children.size() == 1)
+        return;
+
+    // Check order of keys: they must be increasing and bounded by the keys on the higher levels.
+    for (int i = 0; i < n->keys.size(); i++) {
+        EXPECT(n->keys[i] >= key_min && n->keys[i] <= key_max, "Wrong key order");
+        EXPECT(i == 0 || n->keys[i-1] < n->keys[i], "Wrong key order");
+    }
+
+    // Call on children recursively.
+    for (int i = 0; i < n->children.size(); i++) {
+        int tmin, tmax;
+        if (i == 0)
+            tmin = key_min;
+        else
+            tmin = n->keys[i-1] + 1;
+        if (i < n->keys.size())
+            tmax = n->keys[i] - 1;
+        else
+            tmax = key_max;
+        audit_subtree(tree, n->children[i], n, tmin, tmax, depth+1, leaf_depth);
+    }
+}
+
+void ab_tree::audit()
+{
+    EXPECT(root, "Tree has no root");
+    int leaf_depth = -1;
+    audit_subtree(this, root, nullptr, numeric_limits<int>::min(), numeric_limits<int>::max(), 0, leaf_depth);
+}
+
+// A basic test: insert a couple of keys and show how the tree evolves.
+
+void test_basic()
+{
+    cout << "## Basic test" << endl;
+
+    ab_tree t(2, 3);
+    vector<int> keys = { 3, 1, 4, 5, 9, 2, 6, 8, 7, 0 };
+    for (int k : keys) {
+        t.insert(k);
+        t.show();
+        t.audit();
+        EXPECT(t.find(k), "Inserted key disappeared");
+    }
+
+    for (int k : keys)
+        EXPECT(t.find(k), "Some keys are missing at the end");
+}
+
+// The main test: inserting a lot of keys and checking that they are really there.
+// We will insert num_items keys from the set {1,...,range-1}, where range is a prime.
+
+void test_main(int a, int b, int range, int num_items)
+{
+    // Create a new tree.
+    cout << "## Test: a=" << a << " b=" << b << " range=" << range << " num_items=" << num_items << endl;
+    ab_tree t(a, b);
+
+    int key = 1;
+    int step = (int)(range * 1.618);
+    int audit_time = 1;
+
+    // Insert keys.
+    for (int i=1; i <= num_items; i++) {
+        t.insert(key);
+        // Audit the tree occasionally.
+        if (i == audit_time || i == num_items) {
+            // cout << "== Audit at " << i << endl;
+            // t.show();
+            t.audit();
+            audit_time = (int)(audit_time * 1.33) + 1;
+        }
+        key = (key + step) % range;
+    }
+
+    // Check that the tree contains exactly the items it should contain.
+    key = 1;
+    for (int i=1; i < range; i++) {
+        bool found = t.find(key);
+        // cout << "Step #" << i << ": find(" << key << ") = " << found << endl;
+        EXPECT(found == (i <= num_items), "Tree contains wrong keys");
+        key = (key + step) % range;
+    }
+}
+
+/*** A list of all tests ***/
+
+vector<pair<string, function<void()>>> tests = {
+    { "basic",       [] { test_basic(); } },
+    { "small-2,3",   [] { test_main(2, 3, 997, 700); } },
+    { "small-2,4",   [] { test_main(2, 4, 997, 700); } },
+    { "big-2,3",     [] { test_main(2, 3, 999983, 700000); } },
+    { "big-2,4",     [] { test_main(2, 4, 999983, 700000); } },
+    { "big-10,20",   [] { test_main(10, 20, 999983, 700000); } },
+    { "big-100,200", [] { test_main(100, 200, 999983, 700000); } },
+};
diff --git a/04-ab_tree/cpp/test_main.cpp b/04-ab_tree/cpp/test_main.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..3f4aff0785f636b7fd0ea1a15aa69dafe06f290f
--- /dev/null
+++ b/04-ab_tree/cpp/test_main.cpp
@@ -0,0 +1,43 @@
+#include <cstdlib>
+#include <functional>
+#include <iostream>
+#include <string>
+#include <utility>
+#include <vector>
+
+using namespace std;
+
+extern vector<pair<string, function<void()>>> tests;
+
+void expect_failed(const string& message) {
+    cerr << "Test error: " << message << endl;
+    exit(1);
+}
+
+int main(int argc, char* argv[]) {
+    vector<string> required_tests;
+
+    if (argc > 1) {
+        required_tests.assign(argv + 1, argv + argc);
+    } else {
+        for (const auto& test : tests)
+            required_tests.push_back(test.first);
+    }
+
+    for (const auto& required_test : required_tests) {
+        bool found = false;
+        for (const auto& test : tests)
+            if (required_test == test.first) {
+                cerr << "Running test " << required_test << endl;
+                test.second();
+                found = true;
+                break;
+            }
+        if (!found) {
+            cerr << "Unknown test " << required_test << endl;
+            return 1;
+        }
+    }
+
+    return 0;
+}
diff --git a/04-ab_tree/python/ab_tree.py b/04-ab_tree/python/ab_tree.py
new file mode 100644
index 0000000000000000000000000000000000000000..baae16fbf881908192643ca097a6e4657523dfde
--- /dev/null
+++ b/04-ab_tree/python/ab_tree.py
@@ -0,0 +1,64 @@
+#!/usr/bin/env python3
+
+class ABNode:
+    """Single node in an ABTree.
+
+    Each node contains keys and children
+    (with one more children than there are keys).
+    We also store a pointer to node's parent (None for root).
+    """
+    def __init__(self, keys = None, children = None, parent = None):
+        self.keys = keys if keys is not None else []
+        self.children = children if children is not None else []
+        self.parent = parent
+
+    def find_branch(self, key):
+        """ Try finding given key in this node.
+
+        If this node contains the given key, returns (True, key_position).
+        If not, returns (False, first_position_with_key_greater_than_the_given).
+        """
+        i = 0
+        while (i < len(self.keys) and self.keys[i] < key):
+            i += 1
+
+        return (i < len(self.keys) and self.keys[i] == key, i)
+
+    def insert_branch(self, i, key, child):
+        """ Insert a new key and a given child between keys i and i+1."""
+        self.keys.insert(i, key)
+        self.children.insert(i + 1, child)
+
+class ABTree:
+    """A class representing the whole ABTree."""
+    def __init__(self, a, b):
+        assert a >= 2 and b >= 2 * a - 1, "Invalid values of a, b: {}, {}".format(a, b)
+        self.a = a
+        self.b = b
+        self.root = ABNode(children=[None])
+
+    def find(self, key):
+        """Find a key in the tree.
+
+        Returns True if the key is present, False otherwise.
+        """
+        node = self.root
+        while node:
+            found, i = node.find_branch(key)
+            if found: return True
+            node = node.children[i]
+        return False
+
+    def split_node(self, node, size):
+        """Helper function for insert
+
+        Split node into two nodes such that original node contains first _size_ children.
+        Return new node and the key separating nodes.
+        """
+        # TODO: Implement and use in insert method
+        raise NotImplementedError
+
+    def insert(self, key):
+        """Add a given key to the tree, unless already present."""
+        # TODO: Implement
+        raise NotImplementedError
diff --git a/04-ab_tree/python/ab_tree_test.py b/04-ab_tree/python/ab_tree_test.py
new file mode 100644
index 0000000000000000000000000000000000000000..110553c7f8de784ebf74d38af680ebc99a7d73f2
--- /dev/null
+++ b/04-ab_tree/python/ab_tree_test.py
@@ -0,0 +1,111 @@
+#!/usr/bin/env python3
+import math
+import sys
+
+from ab_tree import ABNode, ABTree
+
+def show(tree):
+    """Show a tree."""
+    def show_node(node, indent):
+        for i in reversed(range(len(node.children))):
+            if i < len(node.keys):
+                print("    " * indent, node.keys[i], sep="")
+            if node.children[i]:
+                show_node(node.children[i], indent + 1)
+
+    show_node(tree.root, 0)
+    print("=" * 70)
+
+def audit(tree):
+    """Invariant check for the given tree."""
+    def audit_node(node, parent, key_min, key_max, depth, leaf_depth):
+        if not node:
+            # Check that all leaves are on the same level.
+            if leaf_depth is None:
+                leaf_depth = depth
+            assert depth == leaf_depth, "Leaves are not on the same level"
+
+        else:
+            # Check consistency of parent pointers
+            assert node.parent == parent, "Inconsistent parent pointers"
+
+            # The number of children must be in the allowed range.
+            assert depth == 0 or len(node.children) >= tree.a, "Too few children"
+            assert len(node.children) <= tree.b, "Too many children"
+
+            # We must have one more children than keys
+            assert len(node.children) == len(node.keys) + 1, "Number of keys does not match number of children"
+
+            # Check that keys are increasing and in (key_min, key_max) range.
+            for i in range(len(node.keys)):
+                assert node.keys[i] > key_min and node.keys[i] < key_max, "Wrong key order"
+                assert i == 0 or node.keys[i - 1] < node.keys[i], "Wrong key order"
+
+            # Check children recursively
+            for i in range(len(node.children)):
+                child_min = node.keys[i - 1] if i > 0 else key_min
+                child_max = node.keys[i] if i < len(node.keys) else key_max
+                leaf_depth = audit_node(node.children[i], node, child_min, child_max, depth + 1, leaf_depth)
+
+        return leaf_depth
+
+    assert tree.root, "Tree has no root"
+    audit_node(tree.root, None, -math.inf, math.inf, 0, None)
+
+def test_basic():
+    """Insert a couple of keys and show how the tree evolves."""
+    print("## Basic test")
+
+    tree = ABTree(2, 3)
+    keys = [3, 1, 4, 5, 9, 2, 6, 8, 7, 0]
+    for key in keys:
+        tree.insert(key)
+        show(tree)
+        audit(tree)
+        assert tree.find(key), "Inserted key disappeared"
+
+    for key in keys:
+        assert tree.find(key), "Some keys are missing at the end"
+
+def test_main(a, b, limit, num_items):
+    print("## Test: a={} b={} range={} num_items={}".format(a, b, limit, num_items))
+
+    tree = ABTree(a, b)
+
+    # Insert keys
+    step = int(limit * 1.618)
+    key, audit_time = 1, 1
+    for i in range(num_items):
+        tree.insert(key)
+        key = (key + step) % limit
+
+        # Audit the tree occasionally
+        if i == audit_time or i + 1 == num_items:
+            audit(tree)
+            audit_time = int(audit_time * 1.33) + 1
+
+    # Check the content of the tree
+    key = 1
+    for i in range(limit):
+        assert tree.find(key) == (i < num_items), "Tree contains wrong keys"
+        key = (key + step) % limit
+
+tests = [
+    ("basic", test_basic),
+    ("small-2,3", lambda: test_main(2, 3, 997, 700)),
+    ("small-2,4", lambda: test_main(2, 4, 997, 700)),
+    ("big-2,3", lambda: test_main(2, 3, 99991, 70000)),
+    ("big-2,4", lambda: test_main(2, 4, 99991, 70000)),
+    ("big-10,20", lambda: test_main(10, 20, 99991, 70000)),
+    ("big-100,200", lambda: test_main(100, 200, 99991, 70000)),
+]
+
+if __name__ == "__main__":
+    for required_test in sys.argv[1:] or [name for name, _ in tests]:
+        for name, test in tests:
+            if name == required_test:
+                print("Running test {}".format(name), file=sys.stderr)
+                test()
+                break
+        else:
+            raise ValueError("Unknown test {}".format(name))
diff --git a/04-ab_tree/task.md b/04-ab_tree/task.md
new file mode 100644
index 0000000000000000000000000000000000000000..a0444d980627a000c61310aa434ad3ae5e9e1951
--- /dev/null
+++ b/04-ab_tree/task.md
@@ -0,0 +1,9 @@
+You are given a representation of _(a, b)-tree_ with a `find` operation,
+and a representation of an _(a, b)-tree node_.
+
+Your goal is to implement an `insert` operation, which inserts the given
+key in the tree (or does nothing if the key is already present). Preferably, 
+you should also implement `split_node` method and use it properly in 
+your `insert` implementation.
+
+You should submit the `ab_tree.*` file (but not `ab_tree_test.*` files).
diff --git a/05-ab_experiment/cpp/Makefile b/05-ab_experiment/cpp/Makefile
new file mode 100644
index 0000000000000000000000000000000000000000..967fad43ba32a2a0f4fa1caa8cbdcfb08f3cfcf1
--- /dev/null
+++ b/05-ab_experiment/cpp/Makefile
@@ -0,0 +1,22 @@
+STUDENT_ID ?= PLEASE_SET_STUDENT_ID
+
+.PHONY: test
+test: ab_experiment
+	@rm -rf out && mkdir out
+	@for test in insert min random ; do \
+		for mode in '2-3' '2-4' ; do \
+			echo t-$$test-$$mode ; \
+			./ab_experiment $$test $(STUDENT_ID) $$mode >out/t-$$test-$$mode ; \
+		done ; \
+	done
+
+INCLUDE ?= .
+CXXFLAGS=-std=c++11 -O2 -Wall -Wextra -g -Wno-sign-compare -I$(INCLUDE)
+
+ab_experiment: ab_tree.h ab_experiment.cpp $(INCLUDE)/random.h
+	$(CXX) $(CPPFLAGS) $(CXXFLAGS) $^ -o $@
+
+.PHONY: clean
+clean::
+	rm -f ab_experiment
+	rm -rf out
diff --git a/05-ab_experiment/cpp/ab_experiment.cpp b/05-ab_experiment/cpp/ab_experiment.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..31b520ec668725794015191f771545c570200c75
--- /dev/null
+++ b/05-ab_experiment/cpp/ab_experiment.cpp
@@ -0,0 +1,389 @@
+#include <algorithm>
+#include <functional>
+#include <string>
+#include <utility>
+#include <vector>
+#include <iostream>
+#include <cmath>
+
+#include "ab_tree.h"
+#include "random.h"
+
+using namespace std;
+
+void expect_failed(const string& message) {
+    cerr << "Test error: " << message << endl;
+    exit(1);
+}
+
+/*
+ *  A modified Splay tree for benchmarking.
+ *
+ *  We inherit the implementation of operations from the Tree class
+ *  and extend it by keeping statistics on the number of splay operations
+ *  and the total number of rotations. Also, if naive is turned on,
+ *  splay uses only single rotations.
+ *
+ *  Please make sure that your Tree class defines the rotate() and splay()
+ *  methods as virtual.
+ */
+
+class BenchmarkingABTree : public ab_tree {
+public:
+    int num_operations;
+    int num_struct_changes;
+
+    BenchmarkingABTree(int a, int b) : ab_tree(a,b)
+    {
+        reset();
+    }
+
+    void reset()
+    {
+        num_operations = 0;
+        num_struct_changes = 0;
+    }
+
+    pair<ab_node*, int> split_node(ab_node *node, int size) override
+    {
+        num_struct_changes++;
+        return ab_tree::split_node(node, size);
+    }
+
+    void insert(int key) override
+    {
+        num_operations++;
+        ab_tree::insert(key);
+    }
+
+    // Return the average number of rotations per operation.
+    double struct_changes_per_op()
+    {
+        if (num_operations > 0)
+            return (double) num_struct_changes / num_operations;
+        else
+            return 0;
+    }
+
+    // Delete key from the tree. Does nothing if the key is not in the tree.
+    void remove(int key){
+        num_operations += 1;
+
+        // Find the key to be deleted
+        ab_node *node = root;
+        int i;
+        bool found = node->find_branch(key, i);
+        while(!found){
+            node = node->children[i];
+            if (!node) return;     // Key is not in the tree
+            found = node->find_branch(key, i);
+        }
+
+        // If node is not a leaf, we need to swap the key with its successor
+        if (node->children[0] != nullptr){        // Only leaves have nullptr as children
+            // Successor is leftmost key in the right subtree of key
+            ab_node *succ = min(node->children[i+1]);
+            swap(node->keys[i], succ->keys[0]);
+            node = succ;
+        }
+
+        // Now run the main part of the delete
+        remove_leaf(key, node);
+    }
+
+private:
+    // Main part of the remove
+    void remove_leaf(int key, ab_node* node)
+    {
+        EXPECT(node != nullptr, "Trying to delete key from nullptr");
+        EXPECT(node->children[0] == nullptr, "Leaf's child must be nullptr");
+
+        while(1){
+            // Find the key in the node
+            int key_position;
+            bool found = node->find_branch(key, key_position);
+            EXPECT(found, "Trying to delete key that is not in the node.");
+
+            // Start with the deleting itself
+            node->keys.erase(node->keys.cbegin() + key_position);
+            node->children.erase(node->children.cbegin() + key_position + 1);
+
+            // No underflow means we are done
+            if (node->children.size() >= a) return;
+
+            // Root may underflow, but cannot have just one child (unless tree is empty)
+            if (node == root){
+                if ((node->children.size() == 1) && (root->children[0] != nullptr)){
+                    ab_node *old_root = root;
+                    root = root->children[0];
+                    root->parent = nullptr;
+                    delete_node(old_root);
+                }
+                return;
+            }
+
+            ab_node *brother;
+            int separating_key_pos;
+            bool tmp;
+            tie(brother, separating_key_pos, tmp) = get_brother(node);
+            int separating_key = node->parent->keys[separating_key_pos];
+
+            // First check whether we can steal brother's child
+            if (brother->children.size() > a){
+                steal_child(node);
+                return;
+            }
+
+            // If the brother is too small, we merge with him and propagate the delete
+            node = merge_node(node);
+            node = node->parent;
+            key = separating_key;
+            key_position = separating_key_pos;
+        }
+    }
+
+    // Return the leftmost node of a subtree rooted at node.
+    ab_node* min(ab_node *node)
+    {
+        EXPECT(node != nullptr, "Trying to search for minimum of nullptr");
+        while (node->children[0]) {
+            node = node->children[0];
+        }
+        return node;
+    }
+
+    // Return the left brother if it exists, otherwise return right brother.
+    // Returns tuple (brother, key_position, is_left_brother), where
+    // key_position is a position of the key that separates node and brother in their parent.
+    tuple<ab_node*, int, bool> get_brother(ab_node* node)
+    {
+        ab_node *parent = node->parent;
+        EXPECT(parent != nullptr, "Node without parent has no brother");
+
+        // Find node in parent's child list
+        int i;
+        for(i = 0; i < parent->children.size(); ++i){
+            ab_node *c = parent->children[i];
+            if (c == node) break;
+        }
+        EXPECT(i < parent->children.size(), "Node is not inside its parent");
+
+        if (i == 0){
+            return make_tuple(parent->children[1], 0, false);
+        }
+        else{
+            return make_tuple(parent->children[i - 1], i - 1, true);
+        }
+    }
+
+    // Transfer one child from node's left brother to the node.
+    // If node has no left brother, use right brother instead.
+    void steal_child(ab_node* node)
+    {
+        ab_node *brother;
+        int separating_key_pos;
+        bool is_left_brother;
+        tie(brother, separating_key_pos, is_left_brother) = get_brother(node);
+        int separating_key = node->parent->keys[separating_key_pos];
+
+        EXPECT(brother->children.size() > a, "Stealing child causes underflow in brother!");
+        EXPECT(node->children.size() < b, "Stealing child causes overflow in the node!");
+
+        // We steal either from front or back
+        int steal_position, target_position;
+        if (is_left_brother){
+            steal_position = brother->children.size()-1;
+            target_position = 0;
+        }
+        else{
+            steal_position = 0;
+            target_position = node->children.size();
+        }
+        // Steal the child
+        ab_node *stolen_child = brother->children[steal_position];
+        if (stolen_child != nullptr){
+            stolen_child->parent = node;
+        }
+        node->children.insert(node->children.cbegin() + target_position, stolen_child);
+        brother->children.erase(brother->children.cbegin() + steal_position);
+
+        // List of keys is shorter than list of children
+        if (is_left_brother) steal_position -= 1;
+        else target_position -= 1;
+
+        // Update keys
+        node->keys.insert(node->keys.cbegin() + target_position, separating_key);
+        node->parent->keys[separating_key_pos] = brother->keys[steal_position];
+        brother->keys.erase(brother->keys.cbegin() + steal_position);
+    }
+
+public:
+    // Merge node with its left brother and destroy the node. Must not cause overflow!
+    // Returns result of the merge.
+    // If node has no left brother, use right brother instead.
+    ab_node* merge_node(ab_node* node){
+        num_struct_changes += 1;
+
+        ab_node *brother;
+        int separating_key_pos;
+        bool is_left_brother;
+        tie(brother, separating_key_pos, is_left_brother) = get_brother(node);
+        int separating_key = node->parent->keys[separating_key_pos];
+
+        // We swap brother and node if necessary so that the node is always on the right
+        if (!is_left_brother) swap(brother, node);
+
+        for (auto c: node->children)
+            brother->children.push_back(c);
+        brother->keys.push_back(separating_key);
+        for (auto k: node->keys)
+            brother->keys.push_back(k);
+
+        EXPECT(brother->children.size() <= b, "Merge caused overflow!");
+
+        // Update parent pointers in non-leaf
+        if (brother->children[0] != nullptr){
+            for (auto c : brother->children)
+                c->parent = brother;
+        }
+        
+        delete_node(node);
+        return brother;
+    }
+};
+
+int a, b;
+RandomGen *rng;         // Random generator object
+
+// An auxiliary function for generating a random permutation.
+vector<int> random_permutation(int n)
+{
+    vector<int> perm;
+    for (int i=0; i<n; i++)
+        perm.push_back(i);
+    for (int i=0; i<n-1; i++)
+        swap(perm[i], perm[i + rng->next_range(n-i)]);
+    return perm;
+}
+
+void test_insert()
+{
+    for (int e=32; e<=64; e++) {
+        int n = (int) pow(2, e/4.);
+        BenchmarkingABTree tree = BenchmarkingABTree(a,b);
+
+        vector<int> perm = random_permutation(n);
+        for (int x : perm)
+            tree.insert(x);
+
+        cout << n << " " << tree.struct_changes_per_op() << endl;
+    }
+}
+
+void test_random()
+{
+    for (int e=32; e<=64; e++) {
+        int n = (int) pow(2, e/4.);
+        BenchmarkingABTree tree = BenchmarkingABTree(a,b);
+
+        // We keep track of elements present and not present in the tree
+        vector<int> elems;
+        vector<int> anti_elems;
+        elems.reserve(n);
+        anti_elems.reserve(n+1);
+
+        for (int x = 0; x < 2*n; x+=2){
+            tree.insert(x);
+            elems.push_back(x);
+        }
+
+        for (int i = -1; i <2*n + 1; i+=2)
+            anti_elems.push_back(i);
+
+        for (int i=0; i<n; i++){
+            int r, x;
+            // Delete random element
+            r = rng->next_range(elems.size());
+            x = elems[r];
+            tree.remove(x);
+            elems.erase(elems.cbegin() + r);
+            anti_elems.push_back(x);
+
+            // Insert random "anti-element"
+            r = rng->next_range(anti_elems.size());
+            x = anti_elems[r];
+            tree.insert(x);
+            elems.push_back(x);
+            anti_elems.erase(anti_elems.cbegin() + r);
+        }
+
+        cout << n << " " << tree.struct_changes_per_op() << endl;
+    }
+}
+
+void test_min()
+{
+    for (int e=32; e<=64; e++) {
+        int n = (int) pow(2, e/4.);
+        BenchmarkingABTree tree = BenchmarkingABTree(a,b);
+
+        for (int x = 0; x < n; x++)
+            tree.insert(x);
+
+        for (int i=0; i<n; i++){
+            tree.remove(0);
+            tree.insert(0);
+        }
+
+        cout << n << " " << tree.struct_changes_per_op() << endl;
+    }
+}
+
+vector<pair<string, function<void()>>> tests = {
+    { "insert", test_insert },
+    { "random", test_random },
+    { "min",    test_min },
+};
+
+int main(int argc, char **argv)
+{
+    if (argc != 4) {
+        cerr << "Usage: " << argv[0] << " <test> <student-id> (2-3|2-4)" << endl;
+        return 1;
+    }
+
+    string which_test = argv[1];
+    string id_str = argv[2];
+    string mode = argv[3];
+
+    try {
+        rng = new RandomGen(stoi(id_str));
+    } catch (...) {
+        cerr << "Invalid student ID" << endl;
+        return 1;
+    }
+
+    a = 2;
+    if (mode == "2-3")
+      b = 3;
+    else if (mode == "2-4")
+      b = 4;
+    else
+      {
+        cerr << "Last argument must be either '2-3' or '2-4'" << endl;
+        return 1;
+      }
+
+    for (const auto& test : tests) {
+        if (test.first == which_test)
+          {
+            cout.precision(12);
+            test.second();
+            return 0;
+          }
+    }
+    cerr << "Unknown test " << which_test << endl;
+    return 1;
+    
+   return 0;
+}
diff --git a/05-ab_experiment/cpp/random.h b/05-ab_experiment/cpp/random.h
new file mode 100644
index 0000000000000000000000000000000000000000..7d18ab60dfd6302a9261fc034f28e91d37eca78b
--- /dev/null
+++ b/05-ab_experiment/cpp/random.h
@@ -0,0 +1,59 @@
+#define DS1_RANDOM_H
+
+#include <cstdint>
+
+/*
+ * This is the xoroshiro128+ random generator, designed in 2016 by David Blackman
+ * and Sebastiano Vigna, distributed under the CC-0 license. For more details,
+ * see http://vigna.di.unimi.it/xorshift/.
+ *
+ * Rewritten to C++ by Martin Mares, also placed under CC-0.
+ */
+
+class RandomGen {
+    uint64_t state[2];
+
+    uint64_t rotl(uint64_t x, int k)
+    {
+        return (x << k) | (x >> (64 - k));
+    }
+
+  public:
+    // Initialize the generator, set its seed and warm it up.
+    RandomGen(unsigned int seed)
+    {
+        state[0] = seed * 0xdeadbeef;
+        state[1] = seed ^ 0xc0de1234;
+        for (int i=0; i<100; i++)
+            next_u64();
+    }
+
+    // Generate a random 64-bit number.
+    uint64_t next_u64(void)
+    {
+        uint64_t s0 = state[0], s1 = state[1];
+        uint64_t result = s0 + s1;
+        s1 ^= s0;
+        state[0] = rotl(s0, 55) ^ s1 ^ (s1 << 14);
+        state[1] = rotl(s1, 36);
+        return result;
+    }
+
+    // Generate a random 32-bit number.
+    uint32_t next_u32(void)
+    {
+      return next_u64() >> 11;
+    }
+
+    // Generate a number between 0 and range-1.
+    unsigned int next_range(unsigned int range)
+    {
+        /*
+         * This is not perfectly uniform, unless the range is a power of two.
+         * However, for 64-bit random values and 32-bit ranges, the bias is
+         * insignificant.
+         */
+        return next_u64() % range;
+    }
+};
+
diff --git a/05-ab_experiment/python/Makefile b/05-ab_experiment/python/Makefile
new file mode 100644
index 0000000000000000000000000000000000000000..48e36aeae7d4f348f89189ead5716de67b88f6e4
--- /dev/null
+++ b/05-ab_experiment/python/Makefile
@@ -0,0 +1,15 @@
+STUDENT_ID ?= PLEASE_SET_STUDENT_ID
+
+.PHONY: test
+test: ab_experiment.py ab_tree.py
+	@rm -rf out && mkdir out
+	@for test in insert min random ; do \
+		for mode in '2-3' '2-4' ; do \
+			echo t-$$test-$$mode ; \
+			./ab_experiment.py $$test $(STUDENT_ID) $$mode >out/t-$$test-$$mode ; \
+		done ; \
+	done
+
+.PHONY: clean
+clean::
+	rm -rf out __pycache__
diff --git a/05-ab_experiment/python/ab_experiment.py b/05-ab_experiment/python/ab_experiment.py
new file mode 100755
index 0000000000000000000000000000000000000000..bc116e39032ee4dd1e2e64f1d17d63626ef9ee82
--- /dev/null
+++ b/05-ab_experiment/python/ab_experiment.py
@@ -0,0 +1,259 @@
+#!/usr/bin/env python3
+
+import sys
+import random
+
+from ab_tree import ABTree
+
+class BenchmarkingABTree(ABTree):
+    """A modified ABTree for benchmarking.
+
+    We inherit the implementation of operations from the ABTree class
+    and extend it by delete operation and by keeping statistics on the number
+    of operations and the total number of structural changes.
+    """
+    def __init__(self, a, b):
+        ABTree.__init__(self, a, b)
+        self.reset()
+
+    def reset(self):
+        """ Reset statistics """
+        self.num_operations = 0
+        self.num_struct_changes = 0
+
+    def struct_changes_per_op(self):
+        """Return the average number of struct. changes per operation."""
+        if self.num_operations > 0:
+            return self.num_struct_changes / self.num_operations
+        else:
+            return 0
+
+    def insert(self, key):
+        self.num_operations += 1
+        ABTree.insert(self, key)
+
+    def split_node(self, node, size):
+        self.num_struct_changes += 1
+        return ABTree.split_node(self, node, size)
+
+    def remove(self, key):
+        """ Delete key from the tree. Does nothing if the key is not in the tree. """
+        self.num_operations += 1
+
+        # Find the key to be deleted
+        node = self.root
+        found, i = node.find_branch(key)
+        while not found:
+            node = node.children[i]
+            if not node: return     # Key is not in the tree
+            found, i = node.find_branch(key)
+
+        # If node is not a leaf, we need to swap the key with its successor
+        if node.children[0] is not None:        # Only leaves have None as children
+            # Successor is leftmost key in the right subtree of key
+            succ = self._min(node.children[i+1])
+            node.keys[i], succ.keys[0] = succ.keys[0], node.keys[i]
+            node = succ
+
+        # Now run the main part of the delete
+        self._remove_leaf(key, node)
+
+    def _remove_leaf(self, key, node):
+        """ Main part of the delete.
+        """
+        assert node is not None, "Trying to delete key from None"
+        assert node.children[0] is None, "Leaf's child must be None"
+
+        while True:
+            # Find the key in the node
+            found, key_position = node.find_branch(key)
+            assert found, "Trying to delete key that is not in the node."
+
+            # Start with the deleting itself
+            del node.keys[key_position]
+            del node.children[key_position + 1]
+
+            # No underflow means we are done
+            if len(node.children) >= self.a: return
+
+            # Root may underflow, but cannot have just one child (unless tree is empty)
+            if node == self.root:
+                if (len(node.children) == 1) and (self.root.children[0] is not None):
+                    self.root = self.root.children[0]
+                    self.root.parent = None
+                return
+
+            brother, separating_key_pos, _ = self._get_brother(node)
+            separating_key = node.parent.keys[separating_key_pos]
+
+            # First check whether we can steal brother's child
+            if len(brother.children) > self.a:
+                self._steal_child(node)
+                return
+
+            # If the brother is too small, we merge with him and propagate the delete
+            node = self.merge_node(node)
+            node, key, key_position = node.parent, separating_key, separating_key_pos
+
+    def _min(self, node):
+        """ Return the leftmost node of a subtree rooted at node."""
+        assert node is not None
+        while node.children[0] is not None:
+            node = node.children[0]
+        return node
+
+    def _get_brother(self, node):
+        """ Return the left brother if it exists, otherwise return right brother.
+            returns tuple (brother, key_position, is_left_brother), where
+            key_position is a position of the key that separates node and brother in their parent.
+        """
+        parent = node.parent
+        assert parent is not None, "Node without parent has no brother"
+
+        # Find node in parent's child list
+        i = 0
+        for c in parent.children:
+            if c is node: break
+            else: i += 1
+        assert i < len(parent.children), "Node is not inside its parent"
+
+        if i == 0:
+            return parent.children[1], 0, False
+        else:
+            return parent.children[i - 1], i - 1, True
+
+    def _steal_child(self, node):
+        """ Transfer one child from node's left brother to the node.
+            If node has no left brother, use right brother instead.
+        """
+        brother, separating_key_pos, is_left_brother = self._get_brother(node)
+        separating_key = node.parent.keys[separating_key_pos]
+
+        assert len(brother.children) > self.a, "Stealing child causes underflow in brother!"
+        assert len(node.children) < self.b, "Stealing child causes overflow in the node!"
+
+        # We steal either from front or back
+        if is_left_brother:
+            steal_position = len(brother.children)-1
+            target_position = 0
+        else:
+            steal_position = 0
+            target_position = len(node.children)
+        # Steal the child
+        stolen_child = brother.children[steal_position]
+        if stolen_child is not None:
+            stolen_child.parent = node
+        node.children.insert(target_position, stolen_child)
+        del brother.children[steal_position]
+
+        # List of keys is shorter than list of children
+        if is_left_brother:
+            steal_position -= 1
+        else:
+            target_position -= 1
+        # Update keys
+        node.keys.insert(target_position, separating_key)
+        node.parent.keys[separating_key_pos] = brother.keys[steal_position]
+        del brother.keys[steal_position]
+
+    def merge_node(self, node):
+        """ Merge node with its left brother and destroy the node. Must not cause overflow!
+
+        Returns result of the merge.
+        If node has no left brother, use right brother instead.
+        """
+        self.num_struct_changes += 1
+
+        brother, separating_key_pos, is_left_brother = self._get_brother(node)
+        separating_key = node.parent.keys[separating_key_pos]
+
+        # We swap brother and node if necessary so that the node is always on the right
+        if not is_left_brother:
+            brother, node = node, brother
+
+        brother.children.extend(node.children)
+        brother.keys.append(separating_key)
+        brother.keys.extend(node.keys)
+
+        assert len(brother.children) <= self.b, "Merge caused overflow!"
+
+        # Update parent pointers in non-leaf
+        if brother.children[0] is not None:
+            for c in brother.children:
+                c.parent = brother
+        return brother
+
+def test_insert():
+    for exp in range(32, 64):
+        n = int(2**(exp/4))
+        tree = BenchmarkingABTree(a, b)
+
+        for elem in random.sample(range(n), n):
+            tree.insert(elem)
+
+        print(n, tree.struct_changes_per_op())
+
+def test_random():
+    for exp in range(32, 64):
+        n = int(2**(exp/4))
+        tree = BenchmarkingABTree(a, b)
+
+        for elem in range(0, 2*n, 2):
+            tree.insert(elem)
+
+        # We keep track of elements present and not present in the tree
+        elems = list(range(0, n, 2))
+        anti_elems = list(range(-1, 2*n+1, 2))
+
+        for _ in range(n):
+            # Delete random element
+            elem = random.choice(elems)
+            tree.remove(elem)
+            elems.remove(elem)
+            anti_elems.append(elem)
+
+            # Insert random "anti-element"
+            elem = random.choice(anti_elems)
+            tree.insert(elem)
+            elems.append(elem)
+            anti_elems.remove(elem)
+
+        print(n, tree.struct_changes_per_op())
+
+def test_min():
+    for exp in range(32, 64):
+        n = int(2 ** (exp / 4))
+        tree = BenchmarkingABTree(a, b)
+
+        for i in range(n):
+            tree.insert(i)
+
+        for _ in range(n):
+            tree.remove(0)
+            tree.insert(0)
+
+        print(n, tree.struct_changes_per_op())
+
+tests = {
+    "min": test_min,
+    "insert": test_insert,
+    "random": test_random,
+}
+
+if __name__ == '__main__':
+    if len(sys.argv) == 4:
+        test, student_id = sys.argv[1], sys.argv[2]
+        a = 2
+        if sys.argv[3] == "2-3":
+            b = 3
+        elif sys.argv[3] == "2-4":
+            b = 4
+        else:
+            raise ValueError("Last argument must be either '2-3' or '2-4'")
+        random.seed(student_id)
+        if test in tests:
+            tests[test]()
+        else:
+            raise ValueError("Unknown test {}".format(test))
+    else:
+        raise ValueError("Usage: {} <test> <student-id> (2-3|2-4)".format(sys.argv[0]))
diff --git a/05-ab_experiment/task.md b/05-ab_experiment/task.md
new file mode 100644
index 0000000000000000000000000000000000000000..52f634b87d5ba02ee55b67b7f03d79f7474cbfbb
--- /dev/null
+++ b/05-ab_experiment/task.md
@@ -0,0 +1,82 @@
+## Goal
+
+The goal of this assignment is to evaluate your implementation of (a,b)-trees
+experimentally and compare performance of (2,3) and (2,4)-trees.
+
+You are given a test program (`ab_experiment`) which is used to evaluate your
+implementation of the previous assignment. The test program auguments your implementation
+by implementing a `remove` method and it performs the following experiments:
+
+- _Insert test:_ Insert _n_ elements sequentially and then repeatedly
+  find them all in sequential order.
+- _Min test:_ Insert _n_ elements sequentially and then _n_ times repeat: remove the minimal
+  element in the tree and then insert it back.
+- _Random test:_ Insert _n_ elements sequentially and then _n_ times repeat: remove random
+  element from the tree and then insert random element into the tree. Removed element is
+  always present in the tree and inserted element is always *not* present in the tree.
+
+
+The program tries each experiment with different values of _n_. In each try,
+it prints the average number of _structural changes_ per operation. Structural change is
+either a node split (in insert) or merging of two nodes (in delete).
+
+You should perform these experiments and write a report, which contains the following
+plots of the measured data. Each plot should show the dependence of the average
+number of structural changes on the set size _n_.
+
+- The insert test: one curve for (2,3) tree, one for (2,4) tree.
+- The min test: one curve for (2,3) tree, one for (2,4) tree.
+- The random test: one curve for (2,3) tree, one for (2,4) tree.
+
+The report should discuss the experimental results and try to explain the observed
+behavior using theory from the lectures. (If you want, you can carry out further
+experiments to gain better understanding of the data structure and include these
+in the report. This is strictly optional.)
+
+You should submit a PDF file with the report (and no source code).
+You will get 1 temporary point upon submission if the file is syntantically correct;
+proper points will be assigned later.
+
+## Test program
+
+The test program is given three arguments:
+- The name of the test (`insert`, `min`, `random`).
+- The random seed: you should use the last 2 digits of your student ID (you can find
+  it in the Study Information System – just click on the Personal data icon). Please
+  include the random seed in your report.
+- The type of the tree to test (`2-3` or `2-4`).
+
+The output of the program contains one line per experiment, which consists of _n_ and the
+average number of structural changes.
+
+## Your implementation
+
+Please use your implementation from the previous exercise. Methods `split_node(...)`
+and `insert()` will be augmented by the test program. If you are performing
+a node splits directly instead of using `split_node(...)` method, you
+need to adjust the `BenchmarkingABTree` class accordingly.
+
+## Hints
+
+The following tools can be useful for producing nice plots:
+- [pandas](https://pandas.pydata.org/)
+- [matplotlib](https://matplotlib.org/)
+- [gnuplot](http://www.gnuplot.info/)
+
+A quick checklist for plots:
+- Is there a caption explaining what is plotted?
+- Are the axes clearly labelled? Do they have value ranges and units?
+- Have you mentioned that this axis has logarithmic scale? (Logarithmic graphs
+  are more fitting in some cases, but you should tell.)
+- Is it clear which curve means what?
+- Is it clear what are the measured points and what is an interpolated
+  curve between them?
+- Are there any overlaps? (E.g., the most interesting part of the curve
+  hidden underneath a label?)
+
+In your discussion, please distinguish the following kinds of claims.
+It should be always clear which is which:
+- Experimental results (i.e., the raw data you obtained from the experiments)
+- Theoretical facts (i.e., claims we have proved mathematically)
+- Your hypotheses (e.g., when you claim that the graph looks like something is true,
+  but you are not able to prove rigorously that it always holds)